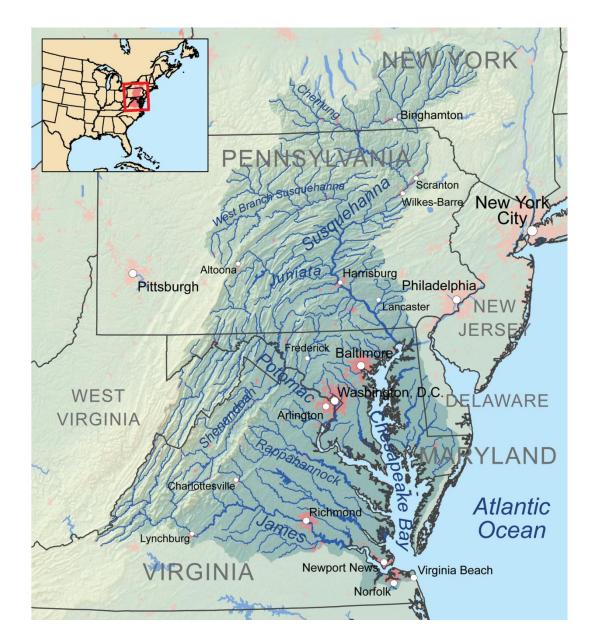
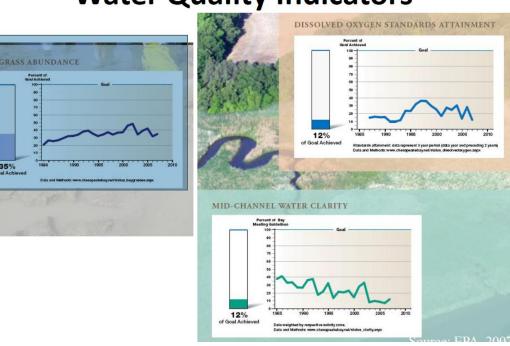
Comparison of Methods for Estimating Poultry Manure Nutrient Generation in the Chesapeake Bay Watershed


Jim Glancey & Bill Brown University of Delaware

Sec. Ed Kee, Mark Davis & Larry Towle Delaware Department of Agriculture

Jennifer Timmons University of Maryland

Jen Nelson USDA NRCS Maryland


The Chesapeake Bay Watershed

EPA Modeling the Impact of the Food (Poultry) Industry

35%

- EPA is using data from the late 1980's and early 1990' to estimate Nitrogen and Phosphorous generation from agriculture and food production systems.
- Key questions:
 - What are the current predictions by the EPA model?
 - What would the model predictions be if modern data were used?

Water Quality Indicators

Key Environmental Parameters

- Nitrogen
- **Phosphorous**
- Sediment (Erosion)

The Poultry Industry

Production, Processing, and Consumption

ASAE Standard, 2003

Table 2 – Fresh manure production and characteristics per 1,000 lb live animal mass per day

						L							
							Animal Type [†]						
Parameter	Units*		Dairy	Beef	Veal	Swine	Sheep	Goat	Horse	Layer	Broiler	Turkey	Duck
Total manure [‡]	lb	mean [§] std. deviation	86 17	58 17	62 24	84 24	40 11	41 8.6	51 7.2	64 19	85 13	47 13	110 **
Urine	lb	mean std. deviation	26 4.3	18 4.2	** **	39 4.8	15 3.6	** **	10 0.74	** **	** **	** **	** **
Density	lb/ft ³	mean std. deviation	62 4.0	63 4.7	62 **	62 1.5	64 4.0	63 **	63 5.8	60 2.4	63 **	63 **	** **
Total solids	lb	mean std. deviation	12 2.7	8.5 2.6	5.2 2.1	11 6.3	11 3.5	13 1.0	15 4.4	16 4.3	22 1.4	12 3.4	31 15
Volatile solids	lb	mean std. deviation	10 0.79	7.2 0.57	2.3 **	8.5 0.66	9.2 0.31	** **	10 3.7	12 0.84	17 1.2	9.1 1.3	19 **
Biochemical oxygen demand, 5-day	lb	mean std. deviation	1.6 0.48	1.6 0.75	1.7 **	3.1 0.72	1.2 0.47	** **	1.7 0.23	3.3 0.91	** **	2.1 0.46	4.5 **
Chemical oxygen demand	lb	mean std. deviation	11 2.4	7.8 2.7	5.3 **	8.4 5.3	11 2.5	** **	** **	11 2.7	16 18	9.3 1.2	27 **
рН		mean std. deviation	7.0 0.45	7.0 0.34	8.1 **	7.5 0.57	** **	** **	7.2 **	6.9 0.56	** **	** **	** **
Total Kjeldahl nitrogen ^l	lb	mean std. deviation	0.45 0.096	0.34 0.073	0.27 0.045	0.52 0.21	0.42 0.11	0.45 0.12	0.30 0.063	0.84 0.22	1.1 0.24	0.62 0.13	1.5 0.54
Ammonia nitrogen	lb	mean std. deviation	0.079 0.083	0.086 0.052	0.12 0.016	0.29 0.10	** **	**	** **	0.21 0.18	** **	0.080 0.018	** **
Total phosphorus	lb	mean std. deviation	0.094 0.024	0.092 0.027	0.066 0.011	0.18 0.10	0.087 0.030	0.11 0.016	0.071 0.026	0.30 0.081	0.30 0.053	0.23 0.093	0.54 0.21

DDA Lab Analysis of Poultry Manure 2005 through 2009

		No.	Total N		Phospha	ate (P2O5)	Total P		
Yea	ar	Samples	%	lbs/ton	%P2O5	lbs P2O5/ton	% P	lbs P/ton	
200	05	462	2.93	58.6	2.23	44.7	0.98	19.5	
200	06	589	2.77	55.4	2.05	41.1	0.90	17.9	
200	07	522	2.86	57.2	2.36	46.4	1.03	20.2	
200	80	472	2.83	56.6	2.35	48.5	1.02	21.1	
200	09	721	2.77	55.5	2.24	44.7	0.98	19.5	
		2766	2.83	56.7	2.25	45.1	0.98	19.7	
	(total No.)	
		of samples)							
			averages						

Manure Generation Estimates

- University of Delaware 1.25 tons per 1000 birds
- University of Maryland 1.0 tons per 1000 birds

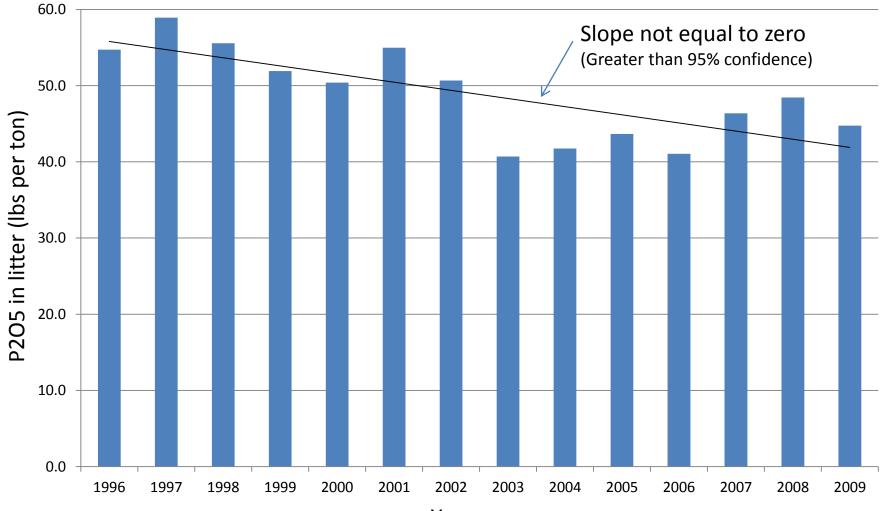
1.07 tons per 1000 small birds

1.65 tons per 1000 large birds

- Arkansas 1.025 tons per 1000 birds
- NRAES 1.25 tons per 1000 birds
- Alabama 0.6 lbs per lb of meat produced

(~ 1.7 tons per 1000 birds)

Case Study: Sussex County, Delaware


	EPA/ASAE	
	Approach	units
Bird Inventory	43,620,576	# of birds on any given day (2007 Census)
Animal Unit Definition	455	# of birds per 1000 lbs of animal mass
Total Animal Unit Inventory	95,869	animal units on any given day
Manure Production	85	lbs of manure per animal unit per day
Total Manure Produced	1,487,174	tons wet excretion per year
Nitrogen Concentration	0.0129	lbs TKN per lb of manure
Phosphorous Concentration	0.0035	lbs Total P per lb of manure
Total Nitrogen Produced	38,491,563	lbs Total N per year
Total Nitrogen Not Volatized	35,332,221	lbs Total N per year
Total Phosphorous Produced	10,497,699	lbs Total P per year
Total Phosphorous Produced	8,818,067	lbs Total P per year
with 16% phytasa cradit		

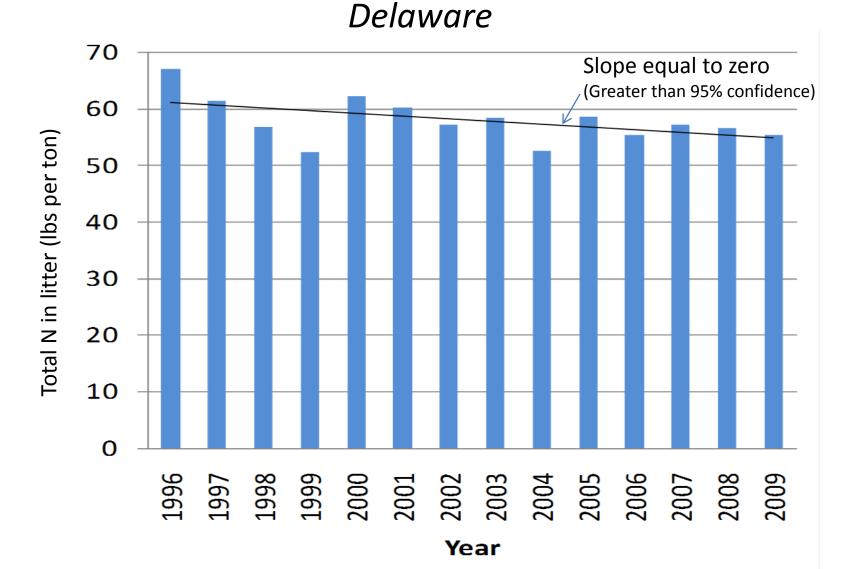
with 16% phytase credit

UD	/DDA/	UMD

Approach	units
43,620,576	# of birds
4.8	flock per year
209,378,765	birds per year
1.25	tons per 1000 birds
261,723	tons per year
56.80	Ibs Total N per ton
19.50	lbs Total P per ton
14,839,720	lbs Total N per year
5,103,607	lbs Total P per year
	43,620,576 4.8 209,378,765 1.25 261,723 56.80 19.50 14,839,720

Phosphorous Concentration Trend Delaware

Year


Implications and Current Status

- Daily Loading of nutrients may be much lower from agriculture and food production systems (significant TMDL implications).
- Chesapeake Bay Program modelers are working with us to better understand modern nutrient generation prediction methods.
- Issue being evaluated by the appropriate agricultural committee within the Chesapeake Bay Program.

Questions?

Comments?

Nitrogen Concentration Trend

Poultry Production on Delmarva

	Finished Bird			
	Wt (lbs)	Growout (days)	Flock per Year	% on Delmarva
Broilers	5.7	49	5.5	40
Roasters	8	61	4.3	60
Delmarva Average	7.08	56.2	4.8	100

ASAE Standard, 2003 (cont')

*All values wet basis.

¹Differences within species according to usage exist, but sufficient fresh manure data to list these differences was not found. Typical live animal masses for which manure values represent are: dairy, 1400 lb; beef, 800 lb; veal, 200 lb; swine, 135 lb; sheep, 60 lb; goat, 140 lb; horse, 1000 lb; layer, 4 lb; broiler, 2 lb; turkey, 15 lb; and duck, 3 lb.

*Feces and urine as voided.

Parameter means within each animal species are comprised of varying populations of data. Maximum numbers of data points for each species are: dairy, 85; beef, 50; veal, 5; swine, 58; sheep, 39; goat, 3; horse, 31; layer, 74; broiler, 14; turkey, 18; and duck, 6.

All nutrients and metals values are given in elemental form.

*Mean bacteria colonies per 1,000 lb animal mass multiplied by 10¹⁰. Colonies per 1,000 lb animal mass divided by lb total manure per 1,000 lb animal mass multiplied by density (lb/ft³) equals colonies per ft³ of manure.

**Data not found.

ASAE STANDARDS 2003

685